A First Program

CSE 1310 – Introduction to Computers and Programming
Alexandra Stefan
University of Texas at Arlington

Credits: a significant part of this material has been created by Dr. Darin Brezeale and Dr. Gian Luca Mariottini

Last updated: 1/15/14
Outline

• Run Python (start the Python IDLE)
• Get familiar with the interpreter (IDLE/Shell)
• Developing code
 – Write a first program
 – Run it
 – Test it
 – Debug it
• How to submit your homework
Simplest Code: Numerical Calculations

• Start the Python shell. You see a welcoming message and the command prompt.

Python 3.2.3 (default, Apr 11 2012, 07:12:16) [MSC v.1500 64 bit (AMD64)] on win32
Type "copyright", "credits" or "license()" for more information.

>>>

Terminology: we will call >>> “the command prompt”. This is Python’s way of telling you “I am waiting for your input”.
Simplest Code: Numerical Calculations

• Let’s type in a single number, and press ENTER.

Python 3.2.3 (default, Apr 11 2012, 07:12:16) [MSC v.1500 64 bit (AMD64)] on win32
Type "copyright", "credits" or "license()" for more information.

>>> 14
Simplest Code: Numerical Calculations

• After we press ENTER, the computer evaluates what we just typed, and prints the result.

Python 3.2.3 (default, Apr 11 2012, 07:12:16) [MSC v.1500 64 bit (AMD64)] on win32
Type "copyright", "credits" or "license()" for more information.

>>> 14
14
>>>
Simplest Code: Numerical Calculations

• After we press ENTER, the computer evaluates what we just typed, and prints the result.

```python
>>> 14
14
>>> 14
>>> 14
```

• This is not very exciting yet, the computer did not tell us anything we did not know.
Circumference and Area of Circle

• Computing the circumference of a circle with radius = 20.231234:
 – Circumference = radius * pi * 2
 >>> 20.231234 * 3.14159 * 2
 127.11648484412

• Computing the area of the same circle:
 – area = (radius ** 2) * pi
 >>> (20.231234 ** 2) * 3.14159
 1285.8616750694227
Improving the code

```python
>>> 20.231234 * 3.14159 * 2
>>> (20.231234 ** 2) * 3.14159
```

- Tedious to type in long numbers repeatedly.
- The above lines are hard to “read” (here ‘read’ means “infer what the lines of code are trying to achieve”).
- Can you change these lines, to address the problems above?
 - Hint: think of using variables
Using Variables

• Replace:

```python
>>> 20.231234 * 3.14159 * 2
>>> (20.231234 ** 2) * 3.14159
```

• With:

```python
>>> radius = 20.231234
>>> pi = 3.14159
>>> circumference = radius * pi * 2
>>> area = (radius ** 2) * pi
```

• Did we lose or gain anything with the new code?
 – Run the two
Using Variables

• When we type in these four lines, Python prints nothing back.

```python
>>> radius = 20.231234
>>> pi = 3.14159
>>> circumference = radius * pi * 2
>>> area = (radius ** 2) * pi
```

• How can we see the actual results?
Using Variables

• When we type in these four lines, Python prints nothing back.

```python
>>> radius = 20.231234
>>> pi = 3.14159
>>> circumference = radius * pi * 2
>>> area = (radius ** 2) * pi
```

• How can we see the actual results?

```python
>>> circumference
127.11648484412
>>> area
1285.8616750694227
```
Doing Repeated Calculations

• What if we want to calculate the area and circumference of circles many times per day (or many times per hour)?

• We can just type in the formulas (as we did in the previous slides) again and again.
 – Any shortcomings of that approach?
The Need for a Program

• What if we want to calculate the area and circumference of circles many times per day (or many times per hour)?

• Typing in the formulas again and again is tedious, and error prone.

• Here is where we can use our first PROGRAM.
Creating a Program

• Create a text file, called “circles.py”.
• From Python shell:
 – File -> New Window
 • Creates a new text window (other than the Shell)
 – File -> Save
 • Allows you to save the file using a name of your choice.
 • IMPORTANT: Make sure you understand what a folder is, and that you know where your file is saved.
 • Talk to the class TA to learn how to do that.
Creating a Program

• Within the file, we put in this text:

```python
# specify the radius value
radius = 25.12

# compute and print the circumference
pi = 3.14159
circumference = radius * 2 * pi
print("Circumference = ", circumference)

# compute and print the area
area = (radius ** 2) * pi
print("area = ", area)
```
Running the program

• From the text file window, choose Run -> Run Module
(or simply press F5).
Running the program

• From the text file window, choose Run -> Run Module
 (or simply press F5).

Circumference = 157.8334816
area = 1982.388528896
Problem: Radius is Hardcoded

• Why is this a problem?
Problem: Radius is Hardcoded

• Why is this a problem?

• Biggest reason: the user needs to be a programmer.
 – You cannot use this program without changing the program.
Revised Program

• Within the file, we put in this text:

```python
# get the radius from the user as a string
radius_string = input("Enter the radius of your circle: ")

# convert the radius string to an integer.
radius = int(radius_string)

# compute and print the circumference
pi = 3.14159
circumference = radius * 2 * pi
print("Circumference = ", circumference)

# compute and print the area
area = (radius ** 2) * pi
print("area = ", area)
```
Running the program

• From the text file window, choose Run -> Run Module
(or simply press F5).
Running the program

• From the text file window, choose Run -> Run Module
 (or simply press F5).

Enter the radius of your circle:
Running the program

• From the text file window, choose Run -> Run Module
 (or simply press F5).

Enter the radius of your circle: 5
Running the program

• From the text file window, choose Run -> Run Module
 (or simply press F5).

Enter the radius of your circle: 5
Circumference = 31.4159
area = 78.53975
Running the program

• From the text file window, choose Run -> Run Module
 (or simply press F5).

Enter the radius of your circle: 5
Circumference = 31.4159
area = 78.53975

Is the formula correct? How can you verify?
Testing the program

• Use values 1 and 2 for the radius (also 0):

Enter the radius of your circle: 1
Circumference = 6.28318
area = 3.14159

Enter the radius of your circle: 2
Circumference = 12.56636
area = 12.56636
Testing the program

• Use weird/bad values for the input:
 – strings,
 – Negative numbers
 – Very large numbers
Understanding the Program

get the radius from the user as a string
radius_string = input("Enter the radius of your circle: ")

convert the radius string to an integer.
radius = int(radius_string)

compute and print the circumference
pi = 3.14159
circumference = radius * 2 * pi
print ("Circumference = ", circumference)

compute and print the area
area = (radius ** 2) * pi
print ("area = ", area)
get the radius from the user as a string
radius_string = input("Enter the radius of your circle: ")

convert the radius string to an integer.
radius = int(radius_string)

compute and print the circumference
pi = 3.14159
circumference = radius * 2 * pi
print("Circumference = ", circumference)

compute and print the area
area = (radius ** 2) * pi
print("area = ", area)

Comment lines:
Are notes to ourselves or other people, the computer ignores all the text from the # sign to the end of the line.
get the radius from the user as a string
radius_string = input("Enter the radius of your circle: ")

convert the radius string to an integer.
radius = int(radius_string)

compute and print the circumference
pi = 3.14159
circumference = radius * 2 * pi
print ("Circumference = ", circumference)

compute and print the area
area = (radius ** 2) * pi
print ("area = ", area)

Getting user input:
input is a BUILT-IN (PREDEFINED) function in Python. Its job is to print out a message, receive input from the user, and store that input into a string.
Understanding the Program

get the radius from the user as a string
radius_string = input("Enter the radius of your circle: ")

convert the radius string to an integer.
radius = int(radius_string)

compute and print the circumference
pi = 3.14159
circumference = radius * 2 * pi
print ("Circumference = ", circumference)

compute and print the area
area = (radius ** 2) * pi
print ("area = ", area)

Type conversion:
radius_string is a string, meaning that it is a variable that stores text. Instead, we are interested in the contents of radius_string as a number. The int function is a PREDEFINED Python function, its job is to convert a string into an integer number.
get the radius from the user as a string
radius_string = input("Enter the radius of your circle: ")

convert the radius string to an integer.
radius = int(radius_string)

compute and print the circumference
pi = 3.14159
circumference = radius * 2 * pi
print ("Circumference = ", circumference)

compute and print the area
area = (radius ** 2) * pi
print ("area = ", area)
Understanding the Program

get the radius from the user as a string
radius_string = input("Enter the radius of your circle: ")

convert the radius string to an integer.
radius = int(radius_string)

compute and print the circumference
pi = 3.14159
circumference = radius * 2 * pi
print ("Circumference = ", circumference)

compute and print the area
area = (radius ** 2) * pi
print ("area = ", area)

Assignments:
These lines perform numerical calculations, and store the results of those calculations using variables. The variables will exist until the program finishes and they are kept in a table.
Understanding the Program

get the radius from the user as a string
radius_string = input("Enter the radius of your circle: ")

convert the radius string to an integer.
radius = int(radius_string)

compute and print the circumference
pi = 3.14159
circumference = radius * 2 * pi
print ("Circumference = ", circumference)

compute and print the area
area = (radius ** 2) * pi
print ("area = ", area)

Printing results:
These lines print out results.
print is a predefined Python function. It prints out strings (text), as well as values of variables.

Note: separation by comma.
Changing the code

get the radius from the user as a string
radius_string = input("Enter the radius of your circle: ")

convert the radius string to an integer.
radius = int(radius_string)

compute and print the circumference
pi = 3.14159
circumference = radius * 2 * pi
print ("Circumference = ", circumference)

compute and print the area
area = (radius ** 2) * pi
print ("area = ", area)

How would you modify this program to print “The area of the circle is “ instead of “area = “?
get the radius from the user as a string
radius_string = input("Enter the radius of your circle: ")

convert the radius string to an integer.
radius = int(radius_string)

compute and print the circumference
pi = 3.14159
circumference = radius * 2 * pi
print("Circumference = ", circumference)

compute and print the area
area = (radius ** 2) * pi
print("The area of the circle is ", area)
Changing Variable Names

get the radius from the user as a string
radius_string = input("Enter the radius of your circle: ")

convert the radius string to an integer.
radius = int(radius_string)

compute and print the circumference
pi = 3.14159
circumference = radius * 2 * pi
print ("Circumference = ", circumference)

compute and print the area
area = (radius ** 2) * pi
print ("area = ", area)

What if I want to change the name of variable radius_string to radius_text?
get the radius from the user as a string
radius_text = input("Enter the radius of your circle: ")

convert the radius string to an integer.
radius = int(radius_text)

compute and print the circumference
pi = 3.14159
circumference = radius * 2 * pi
print ("Circumference = ", circumference)

compute and print the area
area = (radius ** 2) * pi
print ("area = ", area)

What if I want to change the name of variable radius_string to radius_text?
I have to simply replace ALL occurrences of radius_string with radius_text
Will it change the program behavior?
The Importance of Syntax

get the radius from the user as a string
radius_string = input("Enter the radius of your circle: ")

convert the radius string to an integer.
radius = int(radius_string)

compute and print the circumference
pi = 3.14159
circumference = radius * 2 * pi
print ("Circumference = ", circumference)

compute and print the area
area = (radius ** 2) * pi
print ("area = ", area)

Python (like all programming languages) is very picky about syntax.
A single misplaced character can make a program not work.
Note the syntax used in this program, and make sure you use the SAME syntax in your code.
Syntax in this Program

get the radius from the user as a string
radius_string = input("Enter the radius of your circle: ")

convert the radius string to an integer.
in the beginning of comment lines.
radius = int(radius_string)

compute and print the circumference
pi = 3.14159
The input function takes only one string as argument.
circumference = radius * 2 * pi
print ("Circumference = ", circumference)

compute and print the area
The print function takes multiple strings separated by commas.
area = (radius ** 2) * pi
print ("area = ", area)
The Importance of Style

• Original program:

```python
# get the radius from the user as a string
radius_string = input("Enter the radius of your circle: ")

# convert the radius string to an integer.
radius = int(radius_string)

# compute and print the circumference
pi = 3.14159
circumference = radius * 2 * pi
print("Circumference = ", circumference)

# compute and print the area
area = (radius ** 2) * pi
print("area = ", area)
```
The Importance of Style

• Alternative version of the same program:

```python
a = input("Enter the radius of your circle: ")
b = int(a)
c = 3.14159
d = b * 2 * c
print ("Circumference = ", d)
e = b ** 2 * c
print ("area = ", e)
```

• Both versions will run EXACTLY the same.

• What makes the previous version preferable?
The Importance of Style

• Alternative version of the same program:

```python
a = input("Enter the radius of your circle: ")
b = int(a)
c = 3.14159
d = b * 2 * c
print ("Circumference = ", d)
e = b ** 2 * c
print ("area = ", d)
```

• Both versions will run EXACTLY the same.
• What makes the previous version preferable?
• **Readability.** Makes code easier to verify and correct.
The Importance of Style

• Alternative version of the same program:

```python
a = input("Enter the radius of your circle: ")
b = int(a)
c = 3.14159
d = b * 2 * c
print ("Circumference = ", d)
e = b ** 2 * c
print ("area = ", d)
```

• Specific differences:
 – Lack of comments
 – Non-descriptive variable names
 – Lack of empty lines to separate “blocks” of code
Testing and Debugging

• Alternative version of the same program:

```python
a = input("Enter the radius of your circle: ")
b = int(a)
c = 3.14159
d = b * 2 * c
print ("Circumference = ", d)
e = b ** 2 * c
print ("area = ", d)
```

Copy/paste and run this code.
Testing and Debugging

• Run with values 5, and then 1
 – Check the output: notice that both the area and the circumference show the same value, which is incorrect.
Debugging

• Run with values 5, and then 1
 – Check the output: notice that both the area and the circumference show the same value, which is incorrect.

• The error can be due to:
 – Computing (an incorrect result).
 – Printing the incorrect value/variable.
Debugging

• Run with values 5, and then 1
 – Check the output: notice that both the area and the circumference show the same value, which is incorrect.

• The error can be due to:
 – Computing (an incorrect result).
 – Printing the incorrect value/variable.

• The bad style code is harder to check visually.
Some Guidelines

• To learn how to code, you need PRACTICE.
 – What will usually not work:
 • Listen to the lectures.
 • Go and try to do the assignments.
 – What will usually work:
 • Listen to the lectures and KEEP NOTES.
 • Actually type for yourself and run every piece of code that we develop in class. Do this AT HOME, not in class.
 • Understand every line of every piece of code we do in class.
 • Think of variations of what we do in class, and try them.
 – Predict what the variation will do, and test yourself by running it.
 • Then try the assignments.
Some Guidelines

• You need to understand the terminology:
 – Statements, expressions, tokens, literals, functions, strings, variables, operators, ...

• You will encounter many terms in this course. YOU NEED TO LEARN EXACTLY WHAT THEY MEAN.

• DO NOT RELY ON ENGLISH. These terms have meanings in conversational English that are only vaguely related with their meaning in programming.
Terms We Have Seen So Far:

- Command prompt, Shell, IDLE, editor
- Text file
- Filename, file extension
- Folder
- Operator, the order of operators, Python symbols for math operators
- Variable (variable name)
- Literal
- String (in Python)
- Function (in Python, not math)
- Comment
- Input
 - input as a concept and
 - the Python command named input
- Create (a program)
- Run
- Test
- Debug
- Evaluate (and expression)
- Syntax
How to submit your homework

• Windows explorer, location of files, extension of files

• The solution file (that you need to submit for grading) is the file with extension: .py (e.g. circle.py)
 – NOT the run of the IDLE (not the window with ‘>>>’)
 – Pay attention to the difference between IDLE (Shell) and the file EDITOR.

• Submit several files by first making an archive of all of them, and then submitting the archive/zip-file
 – Place all the files in a folder
 – Archive a folder using ZIP and submit the archive (it will have extension .zip).