Priority Queues, Heaps, and Heapsort

CSE 2320 – Algorithms and Data Structures
Alexandra Stefan
(includes slides from Vassilis Athitsos)
University of Texas at Arlington

Last modified: 11/20/2017
Overview

• Priority queue
 – A data structure that on delete/remove removes the item with the HIGHEST priority
 – Implementation (supporting data structures)
 • list/array (sorted/unsorted)
 • heap

• Heap
 – Definition, properties, operations (insert, delete, create)
 – Building a heap (bottom-up and top-down)
 – Finding top k
 – Index items – the heap has the index of the element

• Heapsort
Priority Queues

• Goal – to support (efficiently):
 – Insertion of a new element.
 – Deletion of the max element.
 – Initialization (organizing an initial set of data).

• Useful for online processing
 – We do not have all the data at once (the data keeps coming or changing).
 (So far we have seen sorting methods that work in batch mode:
 • They are given all the items at once, then they sort the items, and finish.)

• Applications:
 – Scheduling:
 • flights take-off and landing, programs executed (CPU), database queries
 – Waitlists:
 • patients in a hospital, student admission
 – Graph algorithms (part of MST)
Arrays and Lists as Priority Queues

Arrays and lists (sorted or unsorted) can be used as priority queues, but they require $O(N)$ for either insert or delete max.

<table>
<thead>
<tr>
<th>Data structure</th>
<th>Insert</th>
<th>Delete max</th>
<th>Create from batch of N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array unsorted</td>
<td>$\Theta(1)$</td>
<td>$\Theta(N)$</td>
<td>$\Theta(N)$</td>
</tr>
<tr>
<td>List unsorted</td>
<td>$\Theta(1)$</td>
<td>$\Theta(N)$</td>
<td>$\Theta(N)$</td>
</tr>
<tr>
<td>Array sorted</td>
<td>$O(N)$ (find position and slide elements)</td>
<td>$\Theta(1)$</td>
<td>$\Theta(N\lg N)$ (e.g. merge sort)</td>
</tr>
<tr>
<td>List sorted</td>
<td>$O(N)$ (find correct position)</td>
<td>$\Theta(1)$</td>
<td>$\Theta(N\lg N)$ (e.g. merge sort)</td>
</tr>
</tbody>
</table>
Priority Queues and Sorting

• Sorting with a heap:
 – Given items to sort:
 – Create a priority queue that contains those items.
 – Initialize result to empty list.
 – While the priority queue is not empty:
 • Remove max element from queue and add it to beginning of result.

• Heapsort – $\Theta(N\log N)$
 – builds the heap in $O(N)$.
Heap Operations

• Initialization:
 – Given N-size array, heapify it.
 – Time: Θ(N). Good!

• Insertion of a new item:
 – Requires rearranging items, to maintain the heap property.
 – Time: O(lg N). Good!

• Deletion/removal of the largest element (max-heap):
 – Requires rearranging items, to maintain the heap property.
 – Time: O(lg N). Good!

• Min-heap is similar.
Heap

• Intuition
 – Lists and arrays: not fast enough => Try a tree (‘fast’ if ‘balanced’).
 – Want to remove the max fast => keep it in the root
 – Keep the tree balanced after insert and delete (to not degenerate to a list)

• Specific heap properties:
 – Every node, N, is larger than or equal to any of his children (their keys).
 • => root has the largest key
 – Complete tree:
 • All levels are full except for possibly the last one
 • If the last level is not full, all nodes are leftmost (no ‘holes’).

• This tree can be represented by an array, A.
 – Root stored at index 1,
 – Node at index i has left child at 2i, right child at 2i+1 and parent at \[\left\lfloor i/2 \right\rfloor\]
Binary Heap: Properties (Invariants)

A valid heap will always have these properties. (Also called invariants.) They will be preserved even after delete and insert.

P1: Order: Every node, N, is larger than or equal to any of its children.

=> Max is in the root.

=> Any path from root to a node (and leaf) will go through nodes that have decreasing value/priority. E.g.: 9,7,5,1 (blue path), or 9,5,4,4

P2: Shape (complete tree)

- All levels are full except for possibly the last level.
 => Heap height = \[\lfloor \log_2 N \rfloor \]
 => If height h => \(2^h \leq N \leq 2^{h+1}-1 \)

- On last level all nodes are rightmost:
Binary Heap: Array Representation

Practice:
- Tree -> Array
- Array -> Tree

We can represent the tree as an array:

<table>
<thead>
<tr>
<th>index</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>9</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Root is at index 1. (At index 0: no data or put the heap size there.)

Node at index i

<table>
<thead>
<tr>
<th>Children</th>
<th>Parent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left 2i</td>
<td>\lceil i/2 \rceil</td>
</tr>
<tr>
<td>Right 2i+1</td>
<td></td>
</tr>
</tbody>
</table>
Heap – Shape Property

• A binary tree representing a heap has to be **complete**:
 – All levels are full, except possibly for the last level.
 – At the last level:
 • Nodes are placed on the left.
 • Empty positions are placed on the right.
 – There is “no hole”
Heap Practice

For each tree, say if it is a max heap or not.
Answers

For each tree, say if it is a max heap or not.

E1

E2

E3

E4

E5

Answers

NO (order)

NO (shape)

YES

NO (shape)

NO (shape)

NO (shape)
Examples and Exercises

• Invalid heaps
 – Order property violated
 – Shape property violated (‘tree with holes’)

• Valid heaps (‘special’ cases)
 – Same key in node and one or both children
 – ‘Extreme’ heaps (all nodes in the left child are smaller than any node in the right child or vice versa)
 – Min-heaps

• Where can these elements be found?
 – Largest element?
 – 2-nd largest?
 – 3-rd largest?
Heap Operations

• Max-Heapify(A, i) (fix-down/float-down)
• Build-Max_Heap(A) (build heap bottom-up)
• Heapsort(A)

• Heap-based Priority Queues

• Top-k

• Handles
Max-Heapify(A, i)
(fix-down/float-down)

• USED
 – When the key, from position i, decreased.
 – To make tree rooted at i be a heap.
 • Assumes the subtrees rooted at Left(i) and Right(i) are heaps.

• How:
 – Repeatedly exchange items as needed, between a node and his largest child, starting at i.

• Example:
 – X was a B (or decreased to B).
Max-Heapify

• B will move down until in a good position.

• Exchange B and T.
Max-Heapify

• B will move down until in a good position.

• Exchange B and T.

• Exchange B and S.
Max-Heapify

• B will move down until in a good position.

• Exchange B and T.
• Exchange B and S.
• Exchange B and R.
Max-Heapify(A,i)

Left(i)-left child of node i
Right(i)-right child of node i

Assumes Left(i) and Right(i) are heaps, but A[i] may be smaller than it’s children (thus not a heap).

MAX-HEAPIFY (A, i)
1 \(l = \text{LEFT}(i) \)
2 \(r = \text{RIGHT}(i) \)
3 if \(l \leq A.\text{heap-size} \) and \(A[l] > A[i] \)
4 \(\text{largest} = l \)
5 else \(\text{largest} = i \)
6 if \(r \leq A.\text{heap-size} \) and \(A[r] > A[\text{largest}] \)
7 \(\text{largest} = r \)
8 if \(\text{largest} \neq i \)
9 exchange \(A[i] \) with \(A[\text{largest}] \)
10 \text{MAX-HEAPIFY}(A, \text{largest})
Batch Initialization

• Batch initialization of a heap
 – The process of converting an unsorted array of data into a heap.
 – We will see 2 methods:
 • top-down and
 • bottom-up.

<table>
<thead>
<tr>
<th>Batch Initialization Method</th>
<th>Time</th>
<th>Extra space (in addition to the space of the input array)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top-down (insert in new array one by one)</td>
<td>$O(N \lg N)$</td>
<td>$\Theta(N)$</td>
</tr>
<tr>
<td>Bottom-up (fix the given array)</td>
<td>$O(N)$</td>
<td>$\Theta(1)$</td>
</tr>
</tbody>
</table>
Bottom-Up Batch Initialization

Turns array A into a heap in $O(N)$. ($N =$ number of elements of A)

Build-Max-Heap(A)

1. A.heap-size = A.length
2. for $i = [A.length/2]$ downto 1
3. Max-Heapify(A, i)

- See animation: https://www.cs.usfca.edu/~galles/visualization/HeapSort.html
 - Note that they do not highlight the node being processed, but directly the children of it as they are compared to find the larger one of them.
Bottom-Up - Example

• Convert the given array to a heap using bottom-up:
 (must work in place):
 5, 3, 20, 15, 7, 12, 9, 14, 8, 11.
Running Time

• How can we analyze the running time?
• To simplify, suppose that last level if complete: \(N = 2^n - 1 \) (=> last level is \((n-1)\) => heap height is \((n-1) = \lg N\)) (see next slide)
• Counter \(i \) starts at value \(2^{n-1} - 1 \).
 – That gives the last node on level \(n-2 \).
 – At that point, we call fixDown on a heap of height 1.
 – For all the \((2^{n-2}) \) nodes at this level, we call fixDown on a heap of height 1 (nodes at this level are at indexes \(i \) s.t. \(2^{n-1} - 1 \geq i \geq 2^{n-2} \)).

......

• When \(i \) is 1 (=2^0) we call Max-Heapify on a heap of height n-1.

```
BUILD-MAX-HEAP(A)
1   A.heap-size = A.length
2   for i = \([A.length/2]\) downto 1
3       MAX-HEAPIFY(A, i)
```
A perfect binary tree with N nodes has:

- $\lceil \lg N \rceil + 1$ levels
- height $\lfloor \lg N \rfloor$
- $\lfloor N/2 \rfloor$ leaves (half the nodes are on the last level)
- $\lceil N/2 \rceil$ internal nodes (half the nodes are internal)

$\sum_{k=0}^{n-1} 2^k = 2^n - 1$

<table>
<thead>
<tr>
<th>Level</th>
<th>Nodes per level</th>
<th>Sum of nodes from root up to this level</th>
<th>Heap height</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2^0 (=1)</td>
<td>$2^1 - 1$ (=1)</td>
<td>n-1</td>
</tr>
<tr>
<td>1</td>
<td>2^1 (=2)</td>
<td>$2^2 - 1$ (=3)</td>
<td>n-2</td>
</tr>
<tr>
<td>2</td>
<td>2^2 (=4)</td>
<td>$2^3 - 1$ (=7)</td>
<td>n-3</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>2^i</td>
<td>$2^{i+1} - 1$</td>
<td>n-1-i</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n-2</td>
<td>2^{n-2}</td>
<td>$2^{n-1} - 1$</td>
<td>1</td>
</tr>
<tr>
<td>n-1</td>
<td>2^{n-1}</td>
<td>$2^n - 1$</td>
<td>0</td>
</tr>
</tbody>
</table>
Running Time: O(N)

<table>
<thead>
<tr>
<th>Counter from:</th>
<th>Counter to:</th>
<th>Level</th>
<th>Nodes per level</th>
<th>Height of heaps rooted at these nodes</th>
<th>Time per node (fixDown)</th>
<th>Time for fixing all nodes at this level</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^{n-2}</td>
<td>$2^{n-1} - 1$</td>
<td>n-2</td>
<td>2^{n-2}</td>
<td>1</td>
<td>O(1)</td>
<td>O($2^{n-2} \times 1$)</td>
</tr>
<tr>
<td>2^{n-3}</td>
<td>$2^{n-2} - 1$</td>
<td>n-3</td>
<td>2^{n-3}</td>
<td>2</td>
<td>O(2)</td>
<td>O($2^{n-3} \times 2$)</td>
</tr>
<tr>
<td>2^{n-4}</td>
<td>$2^{n-3} - 1$</td>
<td>n-4</td>
<td>2^{n-4}</td>
<td>3</td>
<td>O(3)</td>
<td>O($2^{n-4} \times 3$)</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$2^0 = 1$</td>
<td>$2^1 - 1 = 1$</td>
<td>0</td>
<td>$2^0 = 1$</td>
<td>n − 1</td>
<td>O(n-1)</td>
<td>O($2^0 \times (n-1)$)</td>
</tr>
</tbody>
</table>

- To simplify, assume: $N = 2^n - 1$.
- The analysis is a bit complicated. Pull out 2^{n-1} gives: $\sum_{k=0}^{\infty} kx^k \leq \sum_{k=1}^{\infty} kx^k \rightarrow 2^{n-1} \frac{x}{(1 - x)^2}$ for $x = \frac{1}{2}$ because $\sum_{k=0}^{\infty} kx^k = \frac{x}{(1 - x)^2}$, for $|x| < 1$,
- Total time: sum over the rightmost column: $O(2^{n-1}) \Rightarrow O(N)$ (linear!)
Heapsort

In the pseudocode below:

• Where is the sorted data?
• How does the heap get shorter?

```
HEAPSORT(A)
1  BUILD-MAX-HEAP(A)
2  for i = A.length downto 2
4      A.heap-size = A.heap-size - 1
5  MAX-HEAPIFY(A, 1)
```

Give an example that takes $\Theta(N \lg N)$. Give an example that takes $\Theta(N)$ (extreme case: all equal).
Is Heapsort stable?

- For quick reference:
 - If both children are the same value, and the parent value (9) needs to move down, the value from which child will be promoted (8a or 8b)?

```plaintext
MAX-HEAPIFY(A, i)
1  l = LEFT(i)
2  r = RIGHT(i)
4      largest = l
5  else largest = i
7      largest = r
8  if largest ≠ i
9      exchange A[i] with A[largest]
10     MAX-HEAPIFY(A, largest)

HEAPSORT(A)
1  BUILD-MAX-HEAP(A)
2  for i = A.length downto 2
4  A.heap-size = A.heap-size - 1
5  MAX-HEAPIFY(A, 1)
```
Is Heapsort stable? - NO

- Both of these operations are unstable:
 - Max-Heapify
 - Going from the built heap to the sorted array (remove max and put at the end)

- For quick reference:
 - If both children are the same value, and the parent value (9) needs to move down, the value from which child will be promoted (8a or 8b)? Ans: left child

Max-Heapify(A, i)

```
1  l = LEFT(i)
2  r = RIGHT(i)
3  if $l \leq A.\text{heap-size}$ and $A[l] > A[i]$
4      largest = l
5  else largest = i
6  if $r \leq A.\text{heap-size}$ and $A[r] > A[largest]$
7      largest = r
8  if largest $\neq i$
9      exchange $A[i]$ with $A[largest]$
10     MAX-HEAPIFY($A, largest$)
```

Heapsort(A)

```
1  BUILD-MAX-HEAP($A$)
2  for $i = A.\text{length}$ downto 2
4     $A.\text{heap-size} = A.\text{heap-size} - 1$
5     MAX-HEAPIFY($A, 1$)
```
Is Heapsort Stable? - No

- No. The sorted array is built from the end => items get reversed.
- Example (data comes out of the heap in the right order, it still gets flipped due to moving max to end(see the array above the heap drawing)):
 - Input array: \(A = [9, 8a, 8b, 5] \) (8a and 8b are both 8. a and b are used to indicate their order in the input array).
 - Sorted array: \(A = [5, 8b, 8a, 9] \).

Note: in this example, even if the array was a heap to start with, the sorting part (removing max and putting it at the end) causes the sorting to not be stable.
Is Heapsort Stable? - No

• **Max-Heapify is not stable.**
 - When a node is swapped with his child, they jump all the nodes in between them (in the array).

• **Example:**
 - Input array: \(A = [9, 6, 8a, 5, 8b] \) (8a and 8b are both 8. a and b are used to indicate their order in the input array).
Heap-Based Priority Queues
Heap-Based Priority Queues

Insert\((S, x) \) – Inserts \(x \) in \(S \).

Maximum\((S) \) – Returns the element of \(S \) with the largest key.

Extract-Max\((S) \) or Delete\((S) \)
– Removes and returns the element of \(S \) with the largest key.

Increase-Key\((S, x, k) \)
– Changes \(x \)'s key to be \(k \). Assumes \(x \)'s key was initially lower than \(k \).

Decrease-Key\((S, x, k) \)
– Changes \(x \)'s key to be \(k \). Assumes \(x \)'s key was initially higher than \(k \).
 – Decrease the priority and apply Max-Heapify.
Increasing a Key

• Also called “increasing the priority” of an item.
• Such an operation can lead to violation of the heap property.
• Easy to fix:
 – Exchange items as needed, between node and parent, starting at the node that changed key.
Increasing a Key

• Also called “increasing the priority” of an item.
• Such an operation can lead to violation of the heap property.
• Easy to fix:
 – Exchange items as needed, between node and parent, starting at the node that changed key.
• Example:
 – An E changes to a V.
Increasing a Key

- Also called “increasing the priority” of an item.
- Such an operation can lead to violation of the heap property.
- Easy to fix:
 - Exchange items as needed, between node and parent, starting at the node that changed key.
- Example:
 - An E changes to a V.
 - Exchange V and G. Done?

```
X
T 1
V 2
S 3
A 4
G 5
R 6
I 7
O 8
M 9
N 10
A 11
I 12
```
Increasing a Key

• Also called “increasing the priority” of an item.
• Such an operation can lead to violation of the heap property.
• Easy to fix:
 – Exchange items as needed, between node and parent, starting at the node that changed key.
• Example:
 – An E changes to a V.
 – Exchange V and G.
 – Exchange V and T. Done?
Increasing a Key

- Also called “increasing the priority” of an item.
- Such an operation can lead to violation of the heap property.
- Easy to fix:
 - Exchange items as needed, between node and parent, starting at the node that changed key.
- Example:
 - An E changes to a V.
 - Exchange V and G.
 - Exchange V and T. Done.
Increasing a Key (fix-up/float-up)

Parent(i)
1. `return [i/2]`

Left(i)
1. `return 2i`

Right(i)
1. `return 2i + 1`

Heap-Increase-Key(A, i, key)
1. `if key < A[i]`
2. `error “new key is smaller than current key”`
3. `A[i] = key`
4. `while i > 1 and A[Parent(i)] < A[i]`
5. `exchange A[i] with A[Parent(i)]`
6. `i = Parent(i)`
Inserting a New Record

- This is a heap with 12 items.
- How will a heap with 13 items look?
 - Where can the new node be? (do not worry about the data in the nodes for now)

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>T</td>
<td>S</td>
<td>O</td>
<td>G</td>
<td>R</td>
<td>M</td>
<td>N</td>
<td>A</td>
<td>E</td>
<td>B</td>
<td>A</td>
<td>I</td>
</tr>
</tbody>
</table>

![Heap Diagram]

```plaintext
   T
  / \  
 S   O
 / \ / \ 
G   R
 / \ / \ 
A   B
 / \ / \ 
E   I
 / \ / 
A   N
   8
```

39
Inserting a New Record

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>T</td>
<td>S</td>
<td>O</td>
<td>G</td>
<td>R</td>
<td>M</td>
<td>N</td>
<td>A</td>
<td>E</td>
<td>B</td>
<td>A</td>
<td>I</td>
<td></td>
</tr>
</tbody>
</table>

- Let’s insert V
Inserting a New Record

- Let’s insert V
- Put V in the last position and fix up.

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>T</td>
<td>S</td>
<td>O</td>
<td>G</td>
<td>R</td>
<td>M</td>
<td>N</td>
<td>A</td>
<td>E</td>
<td>B</td>
<td>A</td>
<td>I</td>
<td>V</td>
</tr>
</tbody>
</table>
Inserting a New Record

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>V</td>
<td>S</td>
<td>T</td>
<td>G</td>
<td>R</td>
<td>O</td>
<td>N</td>
<td>A</td>
<td>E</td>
<td>B</td>
<td>A</td>
<td>I</td>
<td>M</td>
</tr>
</tbody>
</table>

- Fixed heap

```
MAX-HEAP-INSERT (A, key)
1  A.heap-size = A.heap-size + 1
2  A[A.heap-size] = -\infty
3  HEAP-INCREASE-KEY (A, A.heap-size, key)
```
Inserting a New Record

- Insertion: Put in the last position and fix up.

- Discuss the runtime for insertion.
 - Let N be the number of nodes in the heap.

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>T</td>
<td>S</td>
<td>O</td>
<td>G</td>
<td>R</td>
<td>M</td>
<td>N</td>
<td>A</td>
<td>E</td>
<td>B</td>
<td>A</td>
<td>I</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Case</th>
<th>Discussion</th>
<th>Time complexity</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worst</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Inserting a New Record

- Insertion: Put in the last position and fix up.

- Discuss the runtime for insertion.
 - Let N be the number of nodes in the heap.

<table>
<thead>
<tr>
<th>position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>T</td>
<td>S</td>
<td>O</td>
<td>G</td>
<td>R</td>
<td>M</td>
<td>N</td>
<td>A</td>
<td>E</td>
<td>B</td>
<td>A</td>
<td>I</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Case</th>
<th>Discussion</th>
<th>Time complexity</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best</td>
<td>1</td>
<td>$\Theta(1)$</td>
<td>V was B</td>
</tr>
<tr>
<td>Worst</td>
<td>Height of heap</td>
<td>$\Theta(\lg N)$</td>
<td>Shown here</td>
</tr>
<tr>
<td>General</td>
<td></td>
<td>$O(\lg N)$</td>
<td></td>
</tr>
</tbody>
</table>
Remove the Maximum

- This is a heap with 12 items.

- How will a heap with 11 items look like?
 - What node will disappear?
 (Again think about the nodes, not the data in them)

- Where is the record with the highest key?
Remove the Maximum

• Removing the maximum
 – Save the record on top of the heap (e.g. as \(ret \))
 – Copy the last record on the first position (on top)
 – Decrement heap size by 1
 – **Fix-down (Max-Heapify) the top (invalid heap now)**
 – Return the original top record, \(ret \).

• ‘No holes’
 – Because a valid item is placed in root.
Remove the Maximum

Fixed heap:

Programming trick (alternative):
- Swap the top with the last
- Decrement size,
- Fix-down(A, 1)
- Return A[len+1]

HEAP-EXTRACT-MAX(A)

1. if A.heap-size < 1
2. error “heap underflow”
3. max = A[1]
5. A.heap-size = A.heap-size - 1
6. MAX-HEAPIFY(A, 1)
7. return max
Remove the Maximum

- Removing the maximum
 - Save the record on top of the heap (e.g. as max)
 - Copy the last record on the first position (on top)
 - Decrement heap size by 1
 - Fix-down the top
 - Return the original top record, max.

- Discuss the runtime for remove max.

<table>
<thead>
<tr>
<th>Case</th>
<th>Discussion</th>
<th>Complexity</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best</td>
<td></td>
<td>$\Theta(1)$</td>
<td></td>
</tr>
<tr>
<td>Worst</td>
<td>Height of heap</td>
<td>$\Theta(\lg N)$</td>
<td>Last node was A, not I</td>
</tr>
<tr>
<td>General</td>
<td>$1<=\ldots<=\lg N$</td>
<td>$O(\lg N)$</td>
<td></td>
</tr>
</tbody>
</table>
Removal of a Non-Max Node

• Replace it with the last node in the heap.
• To restore the heap property: fix up (new priority is larger) or fix down (new priority is smaller).
 – Check which one it is, and fix the heap accordingly.
• Give an example where the new priority is:
 – Decreased
 – Increased.
Insertions and Deletions - Summary

• Insertion:
 – Insert the item to the end of the heap.
 – Fix up to restore the heap property.
 – Time = $O(\log N)$

• Deletion:
 – Will always delete the maximum element. This element is always at the top of the heap (the first element of the heap).
 – Deletion of the maximum element:
 • Exchange the first and last elements of the heap.
 • Decrement heap size.
 • Fix down to restore the heap property.
 • Return $A[\text{heap_size}+1]$ (the original maximum element).
 • Time = $O(\log N)$
Top-Down Batch Initialization

• Build a heap of size N by repeated insertions in an originally empty heap.
 – E.g. build a max-heap from: 5, 3, 20, 15, 7, 12, 9, 14, 8, 11.

• Time complexity? \(O(N\lg N) \)
 – N insertions performed.
 – Each insertion takes \(O(\lg X) \) time.
 • \(X \)- current size of heap.
 • \(X \) goes from 1 to \(N \).
 – In total, worst (and average) case: \(\Theta(N \lg N) \)
 • \(T(N) = \Theta(N\lg N) \).
 – The last \(N/2 \) nodes are inserted in a heap of height \((\lg N)-1 \). \(\Rightarrow T(N) = \Omega(N\lg N) \).
 » Example that results in \(\Theta(N) \)?
 – Each of the \(N \) insertions takes at most \(\lg N \).
 \(\Rightarrow T(N) = O(N\lg N) \).
Index Heap, Handles

• So far:
 – We assumed that the actual data is stored in the heap.
 – We can increase/decrease priority of any specific node and restore the heap.

• In a real application we need to be able to do more
 – Find a particular record in a heap
 • John Doe got better and leaves. Find the record for John in the heap.
 • (This operation will be needed when we use a heap later for MST.)
 – You cannot put the actual data in the heap
 • You do not have access to the data (e.g. for protection)
 • To avoid replication of the data. For example you also need to frequently search in that data so you also need to organize it for efficient search by a different criteria (e.g. ID number).
Index Heap Example - Workout

1. Show the heap with this data (fill in the figure on the right based on the **HA array**).
 1. For each heap node show the corresponding array index as well.

<table>
<thead>
<tr>
<th>Index</th>
<th>HA (H→A)</th>
<th>AH (A→H)</th>
<th>Name</th>
<th>Priority</th>
<th>Other data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>2</td>
<td>Aidan</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
<td>Alice</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>Cam</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>Joe</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
<td>Kate</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>Mary</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>Sam</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

HA – Heap to Array
AH – Array to Heap
Index Heap Example - Solution

HA – Heap to Array
AH – Array to Heap

<table>
<thead>
<tr>
<th>Index</th>
<th>HA (H->A)</th>
<th>AH (A->H)</th>
<th>Name</th>
<th>Priority</th>
<th>Other data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>2</td>
<td>Aidan</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
<td>Alice</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>Cam</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>Joe</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
<td>Kate</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>Mary</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>Sam</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Property:
HA(AH(j)) = j e.g. HA(AH(5)) = 5
AH(HA(j)) = j e.g. AH(HA(1)) = 1

Decrease Kate’s priority to 1. Update the heap.
To swap nodes p_1 and p_2 in the heap: $HA[p_1] \leftrightarrow HA[p_2]$, and $AH[HA[p_1]] \leftrightarrow AH[HA[p_2]]$.

(Satellite data) or (Index into the Name array)

Heap index

Priority
Index Heap Example

Decrease Key – (Kate 20 -> Kate 1)

HA – Heap to Array
AH – Array to Heap

<table>
<thead>
<tr>
<th>Index</th>
<th>HA (H->A)</th>
<th>AH (A->H)</th>
<th>Name</th>
<th>Priority</th>
<th>Other data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5 4</td>
<td>2</td>
<td>Aidan</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
<td>Alice</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4 5</td>
<td>5</td>
<td>Cam</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3 1</td>
<td>Joe</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1 3</td>
<td>Kate</td>
<td>20 1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>Mary</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>Sam</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Property:
HA(AH(j)) = j e.g. HA(AH(5)) = 5
AH(HA(j)) = j e.g. AH(HA(1)) = 1

Decrease Kate’s priority to 1. Update the heap.
To swap nodes 1 and 3 in the heap: HA[1]<->HA[3], and AH[HA[1]] <-> AH[HA[3]].
Index Heap Example

Decrease Key - cont

HA – Heap to Array
AH – Array to Heap

<table>
<thead>
<tr>
<th>Index</th>
<th>HA (H->A)</th>
<th>AH (A->H)</th>
<th>Name</th>
<th>Priority</th>
<th>Other data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5–4</td>
<td>2</td>
<td>Aidan</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
<td>Alice</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4–57</td>
<td>5</td>
<td>Cam</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3–1</td>
<td>Joe</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>137</td>
<td>Kate</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>Mary</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>75</td>
<td>73</td>
<td>Sam</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Property:
HA(AH(j)) = j e.g. HA(AH(5)) = 5
AH(HA(j)) = j e.g. AH(HA(1)) = 1

Continue to fix down 1. Update the heap.
To swap nodes 3 and 7 in the heap: HA[3]<>HA[7], and AH[HA[3]] <> AH[HA[7]].
Finding the Top k Largest Elements
Finding the Top k Largest Elements

• Using a max-heap
• Using a min-heap
Finding the Top k Largest Elements

- Assume N elements

- Using a **max-heap**
 - Build max-heap of size N from all elements, then
 - remove k times
 - May require extra space if cannot modify the array (build heap in place and remove k)
 - Time: $\Theta(N + k*\lg N)$
 - (build heap: $\Theta(N)$, k delete ops: $\Theta(k*\lg N)$)

- Using a **min-heap**
 - Build a min-heap, H, of size k (from the first k elements).
 - (N-k) times perform both: insert and then delete in H.
 - After that, all N elements went through this min-heap and k are left so they **must be** the k largest ones.
 - advantage: less space (constant space: k)
 - Version 1: Time: $\Theta(k + (N - k)*\lg k)$
 (build heap + (N-k) insert & delete)
 - Version 2 (get the top k sorted): Time: $\Theta(k + N*\lg k)$
 (build heap + (N-k) insert & delete + k delete)
Top k Largest with Max-Heap

• N = 10, k = 3, Input: 5, 3, 12, 15, 7, 34, 9, 14, 8, 11.
 (Find the top 3 largest elements.)

• Method:
 – Build a max heap using bottom-up
 – Delete/remove 3 (=k) times from that heap
 • What numbers will come out?

• Show all the steps (even those for bottom-up build heap).
 Draw the heap as a tree.
Top k Largest with Min-Heap

Workout Sheet

• N = 10, k = 3, Input: 5, 3, 12, 15, 7, 34, 9, 14, 8, 11.
 (Find the top 3 largest elements.)

• Method:
 – Build a min heap using bottom-up from the first 3 (=k) elements: 5, 3, 12
 – Repeat 7 (=N-k) times: one insert (of the next number) and one remove.
Top k Largest with Min-Heap

Answers

- What is left in the min heap are the top 3 largest numbers.
 - If you need them in order of largest to smallest, do 3 remove operations.
- Intuition:
 - the MIN-heap acts as a ‘sieve’ that keeps the largest elements going through it.

```
5, 3, 12,
  5, 12, 15
  3, 12, 15
    3, 5
```

```
15, 7, 34,
  12, 15, 34
  12, 15, 34
    9
```

```
9, 14, 8
  12, 34, 14
  15, 34, 14
    11
```
Top k Largest with Min-Heap

- Show the actual heaps and all the steps (insert, delete, and steps for bottom-up heap build). Draw the heaps as a tree.
 - $N = 10$, $k = 3$, Input: 5, 3, 12, 15, 7, 34, 9, 14, 8, 11.
 (Find the top 3 largest elements.)
 - Method:
 - Build a min heap using bottom-up from the first 3 (=k) elements: 5,3,12
 - Repeat 7 (=N-k) times: one insert (of the next number) and one remove.
Top largest k with MIN-Heap: Show the actual heaps and all the steps (for insert, remove, and even those for bottom-up build heap). Draw the heaps as a tree.
Other Types of Problems

• Is this (array or tree) a heap?
• Tree representation vs array implementation:
 – Draw the tree-like picture of the heap given by the array ...
 – Given tree-like picture, give the array
• Perform a sequence of remove/insert on this heap.
• Decrement priority of node x to k
• Increment priority of node x to k
• Remove a specific node (not the max)

• Work done in the slides: Delete, top k, index heaps,...
 – Delete is: delete_max or delete_min.