Recurrences:
Methods and Examples

CSE 2320 – Algorithms and Data Structures
Alexandra Stefan
University of Texas at Arlington
Background

• Solving Summations
 – Needed for the Tree Method

• Math substitution
 – Needed for Methods: Tree and Substitution (induction)
 – E.g. If \(T(n) = 3T(n/8) + 4n^{2.5}\log n, \)
 \(T(n/8) = \ldots \)
 \(T(n-1) = \ldots \)

• Theory on trees
 – Given tree height & branching factor, compute:
 nodes per level
 total nodes in tree

• Logarithms
 – Needed for the Tree Method

• We will use different methods than what was done for solving recurrences in CSE 2315, but one may still benefit from reviewing that material.
Recurrences

• Recursive algorithms
 – It may not be clear what the complexity is, by just looking at the algorithm.

 – In order to find their complexity, we need to:
 • Express the “running time” of the algorithm as a recurrence formula. E.g.: \(f(n) = n + f(n-1) \)
 • Find the complexity of the recurrence:
 – Expand it to a summation with no recursive term.
 – Find a concise expression (or upper bound), \(E(n) \), for the summation.
 – Find \(\Theta \), ideally, or \(O \) (big-Oh) for \(E(n) \).

• Recurrence formulas may be encountered in other situations:
 – Compute the number of nodes in certain trees.
 – Express the complexity of non-recursive algorithms (e.g. selection sort).
Solving Recurrences Methods

• The Master Theorem

• The Recursion-Tree Method
 – Useful for guessing the bound.
 – I will also accept this method as proof for the given bound (if done correctly).

• The Induction Method
 – Guess the bound, use induction to prove it.
 – Note that the book calls this the substitution method, but I prefer to call it the induction method.
void bar(int N) {
 int i, k, t;
 if (N <= 1) return;
 bar(N/5);
 for (i=1; i<=5; i++) {
 bar(N/5);
 }
 for (i=1; i<=N; i++) {
 for (k=N; k>=1; k--)
 for (t=2; t<2*N; t=t+2)
 printf("B");
 }
 bar(N/5);
}

T(N) = ..
Solve T(N)
Compare

void foo1(int N) {
 if (N <= 1) return;
 for (int i = 1; i <= N; i++) {
 foo1(N - 1);
 }
}

T(N) = N \cdot T(N-1) + cN

void foo2(int N) {
 if (N <= 1) return;
 for (int i = 1; i <= N; i++) {
 printf("A");
 }
 foo2(N - 1); // outside of the loop
}

T(N) = T(N-1) + cN

int foo3(int N) {
 if (N <= 1) return 5;
 for (int i = 1; i <= N; i++) {
 return foo3(N - 1);
 }
 // No loop. Returns after the first iteration.
}

T(N) = T(N-1) + c
Recurrence => Code

Answers

• Give a piece of code/pseudocode for which the time complexity recursive formula is:
 – T(1) = c and
 – T(N) = N*T(N-1) + cN

```cpp
void foo(int N){
    if (N <= 1) return;
    for(int i=1; i<=N; i++)
        foo(N-1);
}
```
Recurrences: Recursion-Tree Method

1. Build the tree & fill-out the table
2. Compute cost per level
3. Compute number of levels (find last level as a function of N)
4. Compute total over levels.
 * Find closed form of that summation.

Example 1: Solve \(T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2) \)

Example 2: Solve \(T(n) = T(n/3) + T(2n/3) + O(n) \)
Recurrence - Recursion Tree Relationship

\[T(n) = a \cdot T\left(\frac{n}{b}\right) + cn \]

- **Problem size**
 - Number of subproblems \(\Rightarrow \) Number of children of a node in the recursion tree. \(\Rightarrow \) Affects the number of nodes per level. At level \(i \) there will be \(a^i \) nodes. Affects the level cost.

- **The local cost at the node**
 - \(cn \)

- **Size of a subproblem** \(\Rightarrow \) Affects the number of recursive calls (frame stack max height and tree height)
 - Recursion stops at level the \(k \) for which the pb size is 1 (the node is labelled \(T(1) \)) \(\Rightarrow n/b^k = 1 \) \(\Rightarrow \) Last level, \(k \), will be: \(k = \log_b n \) (assuming the base case is for \(T(1) \)).
Recursion Tree for: $T(n) = 7T(n/5) + cn^3$

Base case: $T(1) = c$

Work it out by hand in class.
Recursion Tree for:
\[T(n) = 7T(n/5) + cn^3 \], Base case: \(T(1) = c \)

<table>
<thead>
<tr>
<th>Level</th>
<th>Arg/ pb size</th>
<th>cost of 1 node</th>
<th>Nodes per level</th>
<th>Level cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(n)</td>
<td>(cn^3)</td>
<td>1</td>
<td>(c*n^3)</td>
</tr>
<tr>
<td>1</td>
<td>(n/5)</td>
<td>(c(n/5)^3)</td>
<td>7</td>
<td>(7c(n/5)^3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>= (cn^3 (7/5^3))</td>
</tr>
<tr>
<td>2</td>
<td>(n/5^2)</td>
<td>(c(n/5^2)^3)</td>
<td>7^2</td>
<td>(7^2c(n/5^2)^3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>= (cn^3 (7/5^3)^2)</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i)</td>
<td>(n/5^i)</td>
<td>(c(n/5^i)^3)</td>
<td>(7^i)</td>
<td>(7^ic(n/5^i)^3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>= (cn^3 (7/5^3)^i)</td>
</tr>
<tr>
<td>(k = \log_5 n)</td>
<td>(1 = n/5^k)</td>
<td>(c = c*1 = c(n/5^k)^3)</td>
<td>(7^k)</td>
<td>(7^kc(n/5^k)^3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>= (cn^3 (7/5^3)^k)</td>
</tr>
</tbody>
</table>

Stop at level \(k \), when the subtree is \(T(1) \).
=> The problem size is 1, but the general formula for the problem size, at level \(k \) is:
\(n/5^k \Rightarrow n/5^k = 1 \Rightarrow k = \log_5 n \)

Where we used:
\(7^i * (n/5^i)^3 = 7^i * n^3 (1/5^i)^3 = 7^i * n^3 (1/5^3)^i = n^3(7/5^3)^i \)
Recursion Tree for:
\[T(n) = 5T(n-6) + c , \text{ Base case: } T(0) = c \]

<table>
<thead>
<tr>
<th>Level</th>
<th>Arg/ pb size</th>
<th>cost of 1 node</th>
<th>Nodes per level</th>
<th>Level cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>n</td>
<td>c</td>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td>1</td>
<td>n-6</td>
<td>c</td>
<td>5</td>
<td>5*c</td>
</tr>
<tr>
<td>2</td>
<td>n-2\times6</td>
<td>c</td>
<td>5^2</td>
<td>5^2*c</td>
</tr>
<tr>
<td>\vdots</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>n-6i</td>
<td>c</td>
<td>5^i</td>
<td>5^i*c</td>
</tr>
<tr>
<td>\vdots</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k</td>
<td>0 (=n-6k)</td>
<td>c</td>
<td>5^k</td>
<td>5^k*c</td>
</tr>
</tbody>
</table>

Stop at level \(k \), when the subtree is \(T(0) \).

\[T(n) = c(1+5+5^2 + 5^3+ \ldots +5^i+\ldots+5^k = c(5^{(k+1)}-1)/(5-1)=\Theta(5^k)= \Theta(5^{n/6}) \]
See more solved examples later in the presentation. Look for page with title:

More practice/ Special cases
Tree Method

\[T(n) = T(n/3) + T(2n/3) + O(n) \]

- Draw the tree, notice the shape, see length of shortest and longest paths.
- Notice that:
 - as long as the levels are full (all nodes have 2 children) the level cost is \(cn \) (the sum of costs of the children equals the parent: \((1/3) * p_cost + (2/3) * p_cost\))
 \[\Rightarrow \text{Total cost for those: } cn * \log_3 n = \Theta(n \log n) \]
 - The number of incomplete levels should also be a multiple of \(\log n \) and the cost for each of those levels will be less than \(cn \)
 - => Guess that \(T(n) = O(n \log n) \)
- Use the substitution method to show \(T(n) = O(n \log n) \)
- If the recurrence was given with \(\Theta \) instead of \(O \), we could have shown \(T(n) = \Theta(n \log n) \)
 - with \(O \), we only know that: \(T(n) \leq T(n/3) + T(2n/3) + cn \)
 - The local cost could even be constant: \(T(n) = T(n/3) + T(2n/3) + c \)
- Exercise: Solve
 - \(T_1(n) = 2T_1(n/3) + cn \) (Why can we use \(cn \) instead of \(\Theta(n) \) in \(T_1(n) = 2T_1(n/3) + cn \) ?)
 - \(T_2(n) = 2T_2(2n/3) + cn \) (useful: \(\log_3 \approx 1.59 \))
 - Use them to bound \(T(n) \). How does that compare to the analysis in this slide? (The bounds are looser).
Master theorem

• We will use the Master Theorem from wikipedia as it covers more cases:
 https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)
• Check the above webpage and the notes handwritten in class.
• Discussion:
 On Wikipedia, below the inadmissible equations there is the justification pasted below.
 However the cases given for the Master Theorem on Wikipedia, do not include any ε in the discussion. Where does that ε come from? Can you do math derivations that start from the formulation of the relevant case of the Theorem and result in the ε and the inequality shown above?

In the second inadmissible example above, the difference between \(f(n) \) and \(n^{\log_b a} \) can be expressed with the ratio \(\frac{f(n)}{n^{\log_b a}} = \frac{n/\log n}{n^{\log_n a}} = \frac{n}{n \log n} = \frac{1}{\log n} \). It is clear that \(\frac{1}{\log n} < n^\epsilon \) for any constant \(\epsilon > 0 \). Therefore, the difference is not polynomial and the basic form of the Master Theorem does not apply. The extended form (case 2b) does apply, giving the solution \(T(n) = \Theta(n \log \log n) \).
Common Recurrences

<table>
<thead>
<tr>
<th></th>
<th>Local cost</th>
<th>Number of sub-problems</th>
<th>Size of sub-problem</th>
<th>T(n)</th>
<th>Description Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\Theta(1)$</td>
<td>1</td>
<td>n/2</td>
<td></td>
<td>Halve problem in constant time</td>
</tr>
<tr>
<td>2</td>
<td>$\Theta(n)$</td>
<td>1</td>
<td>n/2</td>
<td></td>
<td>Halve problem in linear time</td>
</tr>
<tr>
<td>3</td>
<td>$\Theta(1)$</td>
<td>2</td>
<td>n/2</td>
<td></td>
<td>Break (and put back together) the problem into 2 halves in constant time.</td>
</tr>
<tr>
<td>4</td>
<td>$\Theta(n)$</td>
<td>2</td>
<td>n/2</td>
<td></td>
<td>Break (and put back together) the problem into 2 halves in linear time.</td>
</tr>
<tr>
<td>5</td>
<td>$\Theta(1)$</td>
<td>1</td>
<td>n-1</td>
<td></td>
<td>Reduce the pb size by 1 in constant time.</td>
</tr>
<tr>
<td>6</td>
<td>$\Theta(n)$</td>
<td>1</td>
<td>n-1</td>
<td></td>
<td>Reduce the pb size by 1 in linear time.</td>
</tr>
</tbody>
</table>
Common Recurrences Review

1. \textit{Halve} problem in \textbf{constant} time:
 \[T(n) = T(n/2) + c \ \Theta(\ lg(n)) \]

2. \textit{Halve} problem in \textbf{linear} time:
 \[T(n) = T(n/2) + n \ \Theta(n) \ (\sim 2n) \]

3. Break (and put back together) the problem into 2 \textit{halves} in \textbf{constant} time:
 \[T(n) = 2T(n/2) + c \ \Theta(n) \ (\sim 2n) \]

4. Break (and put back together) the problem into 2 \textit{halves} in \textbf{linear} time:
 \[T(n) = 2T(n/2) + n \ \Theta(\ n \ lg(n)) \]

5. Reduce the problem size by 1 in \textbf{constant} time:
 \[T(n) = T(n-1) + c \ \Theta(\ n) \]

6. Reduce the problem size by 1 in \textbf{linear} time:
 \[T(n) = T(n-1) + n \ \Theta(\ n^2) \]
Recurrences: Induction Method

1. Guess the solution
2. Use induction to prove it.
3. Check it at the boundaries (recursion base cases)

Example: Find upper bound for: \(T(n) = 2T\left(\left\lfloor \frac{n}{2} \right\rfloor \right) + n \)

1. Guess that \(T(n) = O(n \log n) \) =>
2. Prove that \(T(n) = O(n \log n) \) using \(T(n) \leq cn \log n \) (for some \(c \))
 1. Assume it holds for all \(m < n \), and prove it holds for \(n \).
3. Assume base case (boundary): \(T(1) = 1 \).
 Pick \(c \) and \(n_0 \) s.t. it works for sufficient base cases and applying the inductive hypotheses.
2. Prove that $T(n) = O(n \lg n)$, using the definition: find c and n_0 s.t. $T(n) \leq c \cdot n \lg n$
(here: $f(n) = T(n)$, $g(n) = n \lg n$)
Show with induction: $T(n) \leq c \cdot n \lg n$ (for some $c > 0$)

$$T(n) = 2T\left(\left\lfloor \frac{n}{2} \right\rfloor \right) + n \leq 2 \cdot c \cdot \left\lfloor \frac{n}{2} \right\rfloor \cdot \lg \left(\left\lfloor \frac{n}{2} \right\rfloor \right) + n \leq 2 \cdot c \cdot \left(\frac{n}{2} \right) \cdot \lg \left(\frac{n}{2} \right) + n = cn \lg (n/2) + n = cn \lg n - cn + n = cn \lg n + n(1-c)
$$

want:

$$\leq cn \lg n \Rightarrow n(1-c) \leq 0 \Rightarrow 1-c \leq 0 \Rightarrow c \geq 1$$

Pick $c = 2$ (the largest of both 1 and 2).
Pick $n_0 = 2$

3. Base case (boundary):
Assume $T(1) = 1$
Find n_0 s.t. the induction holds for all $n \geq n_0$.

$n=1$: $1 = T(1) \leq c \cdot 1 \cdot \lg 1 = c \cdot 0 = 0$
FALSE. => n_0 cannot be 1.

$n=2$: $T(2) = 2 \cdot T(1) + 2 = 2 + 2 = 4$
Want $T(2) \leq c \cdot 2 \lg 2 = 2c$, True for: $c \geq 2$

$n=3$: $T(3) = 2 \cdot T(1) + 3 = 2 + 3 = 5$
Want $5 = T(3) \leq c \cdot 3 \cdot \lg 3$
True for: $c \geq 2$

Here we need 2 base cases for the induction: $n=2$, and $n=3$
Recurrences: Induction Method

Various Issues

• Subtleties (stronger condition needed)
 – Solve: \(T(n) = T(\lfloor n/2 \rfloor + T(\lceil n/2 \rceil)) + 1 \) with \(T(1) = 1 \) and \(T(0) = 1 \)
 – Use a stronger condition: off by a constant, subtract a constant

• Avoiding pitfalls
 – Wrong: In the above example, stop at \(T(n) \leq cn+1 \) and conclude that \(T(n) = O(n) \)
 – See also book example of wrong proof for \(T(n) = 2T(\lfloor n/2 \rfloor) + n \) is \(O(n) \)

• Making a good guess
 – Solve: \(T(n) = 2T(\lfloor n/2 \rfloor + 17) + n \)
 – Find a similar recursion
 – Use looser upper and lower bounds and gradually tighten them

• Changing variables
 – Recommended reading, not required (page 86)
Stronger Hypothesis for

\[T(n) = T\left(\lfloor n/2 \rfloor\right) + T\left(\lceil n/2 \rceil\right) + 1 \]

Show \(T(n) = O(n) \) using the definition: find \(c \) and \(n_0 \) s.t. \(T(n) \leq c \cdot n \)
(here: \(f(n) = T(n), \ g(n) = n \)). Use induction to show \(T(n) \leq c \cdot n \).

Inductive step: assume it holds for all \(m < n \), show for \(n \):

\[
T(n) = T\left(\lfloor n/2 \rfloor\right) + T\left(\lceil n/2 \rceil\right) + 1 \leq c \cdot \lfloor n/2 \rfloor + c \cdot \lceil n/2 \rceil + 1 = c\left(\lfloor n/2 \rfloor + \lceil n/2 \rceil\right) + 1 = cn + 1
\]

We’re stuck. We CANNOT say that \(T(n) = O(n) \) at this point. We must prove the hypothesis exactly: \(T(n) \leq cn \) (not: \(T(n) \leq cn + 1 \)).

Use a stronger hypothesis: prove that \(T(n) \leq cn - d \), for some const \(d > 0 \):

\[
T(n) = T\left(\lfloor n/2 \rfloor\right) + T\left(\lceil n/2 \rceil\right) + 1 \leq c \cdot \lfloor n/2 \rfloor - d + c \cdot \lceil n/2 \rceil - d + 1 = c\left(\lfloor n/2 \rfloor + \lceil n/2 \rceil\right) + 1 - 2d = cn - d + 1 - d
\]

want :

\[
\leq cn - d \Rightarrow 1 - d \leq 0 \Rightarrow d \geq 1
\]
Extra material – Solve:

\[T(n) = 3T\left(\left\lfloor n/4 \right\rfloor\right) + \Theta(n^2) \]

- Use the tree method to make a guess for:
 \[T(n) = 3T(n/4) + \Theta(n^2) \]

- Use the induction method for the original recurrence (with rounding down):
 \[T(n) = 3T(\left\lfloor n/4 \right\rfloor) + \Theta(n^2) \]
More practice/ Special cases
Recurrences solved in following slides:

- $T(n) = T(n-1) + c$
- $T(n) = T(n-4) + c$
- $T(n) = T(n-1) + cn$
- $T(n) = T(n/2) + c$
- $T(n) = T(n/2) + cn$
- $T(n) = 2T(n/2) + c$
- $T(n) = 2T(n/2) + 8$
- $T(n) = 2T(n/2) + cn$
- $T(n) = 3T(n/2) + cn$
- $T(n) = 3T(n/5) + cn$

Recurrences left as individual practice:

- $T(n) = 7T(n/3) + cn$
- $T(n) = 7T(n/3) + cn^3$
- $T(n) = T(n/2) + n$

See also “recurrences practice” problems on the Exams page.
\[T(N) = T(N-1) + c \]

fact(N)

```c
int fact(int N)
{
    if (N <= 1) return 1;
    return N*fact(N-1);
}
```

Time complexity of `fact(N)`? \(T(N) = \ldots \)

\[T(N) = T(N-1) + c \]
\[T(1) = c \]
\[T(0) = c \]

Levels: \(N \)
Each node has cost \(c \) =>
\[T(N) = c*N = \Theta(N) \]
T(N) = T(N-4) + c

int fact4(int N)
{
 if (N <= 1) return 1;
 if (N == 2) return 2;
 if (N == 3) return 6
 return N*(N-1)*(N-2)*(N-3)*fact4(N-4);
}

Time complexity of fact4(N) ? T(N) = ...

T(N) = T(N-4) + c
T(3) = c
T(2) = c
T(1) = c
T(0) = c

Levels: ≈N/4
Each node has cost c =>
T(N) = c*N/4 = Θ(N)
T(N) = T(N-1) + cN

`selection_sort_rec(N)`

```
int fact(int N, int st, int[] A, ){
    if (st >= N-1) return;
    idx = min_index(A, st, N);  // Θ(N-st)
    return sel_sort_rec(A, st+1, N);
}
```

T(N) = T(N-1) + cN
T(1) = c
T(0) = c

Levels: N
Node at level i has cost c(N-i) =>
T(N) = cN+c(N-1)+...ci+...c = cN(N+1)/2 = Θ(N²)
\[T(N) = T(N/2) + c \]

Time complexity tree:

- \[T(N) = c \]
- \[T(N/2) = c \]
- \[T(2) = c \]
- \[T(1) = c \]

Levels: \(\approx \lg N \) (from base case: \(N/2^k=1 \Rightarrow k=\lg N \))

Each node has cost \(c \) =>

\[T(N) = c \times \lg N = \Theta(\lg N) \]
\[T(N) = T(N/2) + cN \]

Time complexity tree:

\[T(N) \]

\[cN \]

\[T(N/2) \]

\[cN/2 \]

\[... \]

\[T(2) \]

\[2c \]

\[T(1) \]

\[c \]

Levels: \(\approx \lg N \) (from base case: \(N/2^k = 1 \Rightarrow k = \lg N \))

Node at level \(i \) has cost \(cN/2^i \) =>

\[T(N) = c(N + N/2 + N/2^2 + \ldots + N/2^i + \ldots + N/2^k) = \]

\[= cN(1 + 1/2 + 1/2^2 + \ldots + 1/2^i + \ldots + 1/2^k) = \]

\[= cN[1 + (1/2) + (1/2)^2 + \ldots + (1/2)^i + \ldots + (1/2)^k] = \]

\[= cN \times \text{constant} = \Theta(N) \]
Recursion Tree for: $T(n) = 2T(n/2) + c$

Base case: $T(1) = c$

Stop at level k, when the subtree is $T(1)$.

\Rightarrow The problem size is 1, but the general formula for the problem size, at level k is: $n/2^k = 1$ \Rightarrow $k = \log_2 n$

Tree cost $= c(1 + 2 + 2^2 + 2^3 + \ldots + 2^i + \ldots + 2^k) = c2^{k+1}/(2-1) = 2c2^k = 2cn = \Theta(n)$
Recursion Tree for: \(T(n) = 2T(n/2) + 8 \)

If specific value is given instead of \(c \), use that. Here \(c=8 \).

Base case: \(T(1) = c \)

Stop at level \(k \), when the subtree is \(T(1) \).

=> The problem size is 1, but the general formula for the problem size, at level \(k \) is: \(n/2^k \Rightarrow n/2^k = 1 \Rightarrow k = \log n \)

<table>
<thead>
<tr>
<th>Level</th>
<th>Arg/ pb size</th>
<th>cost of 1 node</th>
<th>Nodes per level</th>
<th>Level cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(n)</td>
<td>8</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>(n/2)</td>
<td>8</td>
<td>2</td>
<td>2*8</td>
</tr>
<tr>
<td>2</td>
<td>(n/4)</td>
<td>8</td>
<td>4</td>
<td>4*8</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i)</td>
<td>(n/2^i)</td>
<td>8</td>
<td>(2^i)</td>
<td>(2^i*8)</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(k = \log n)</td>
<td>(=n/2^k)</td>
<td>8</td>
<td>(2^k)</td>
<td>(2^k*8)</td>
</tr>
</tbody>
</table>

Tree cost = \(c(1+2+2^2+2^3+\ldots+2^i+\ldots+2^k)=8*2^{k+1}/(2-1) \)

\[= 2*8*2^k = 16n = \Theta(n) \]
Recursion Tree for: \(T(n) = 2T(n/2) + cn \)

Base case: \(T(1) = c \)

Table:

<table>
<thead>
<tr>
<th>Level</th>
<th>Arg/pb size</th>
<th>cost of 1 node</th>
<th>Nodes per level</th>
<th>Level cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(n)</td>
<td>(c*n)</td>
<td>1</td>
<td>(c*n)</td>
</tr>
<tr>
<td>1</td>
<td>(n/2)</td>
<td>(c*n/2)</td>
<td>2</td>
<td>2(cn/2) = (cn)</td>
</tr>
<tr>
<td>2</td>
<td>(n/4)</td>
<td>(c*n/4)</td>
<td>4</td>
<td>4(cn/4) = (cn)</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i)</td>
<td>(n/2^i)</td>
<td>(c*n/2^i)</td>
<td>(2^i)</td>
<td>(2^icn/2^i) = (c*n)</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(k = \lg n)</td>
<td>(1) ((=n/2^k))</td>
<td>(c=c1=cn/2^k)</td>
<td>(2^k) ((=n))</td>
<td>(2^kcn/2^k) = (c*n)</td>
</tr>
</tbody>
</table>

Tree cost:

\[
T(n) = cn * (k + 1) = cn * (1 + \lg n) = cn \lg n + cn = \Theta(n \lg n)
\]
Recursion Tree for \(T(n) = 3T(n/2) + cn \)

Base case: \(T(1) = c \)

<table>
<thead>
<tr>
<th>Level</th>
<th>Arg/ pb size</th>
<th>cost of 1 node</th>
<th>Nodes per level</th>
<th>Level cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>n</td>
<td>(c*n)</td>
<td>1</td>
<td>(c*n)</td>
</tr>
<tr>
<td>1</td>
<td>(n/2)</td>
<td>(c*n/2)</td>
<td>(3)</td>
<td>(3cn/2) (= (3/2)cn)</td>
</tr>
<tr>
<td>2</td>
<td>(n/4)</td>
<td>(c*n/4)</td>
<td>(9)</td>
<td>((3/2)^2cn)</td>
</tr>
<tr>
<td>(\cdots)</td>
</tr>
<tr>
<td>(i)</td>
<td>(n/2^i)</td>
<td>(c*n/2^i)</td>
<td>(3^i)</td>
<td>((3/2)^icn)</td>
</tr>
<tr>
<td>(\cdots)</td>
</tr>
<tr>
<td>(k=\lceil \log n \rceil)</td>
<td>1 ((=n/2^k))</td>
<td>(c=c1=cn/2^k)</td>
<td>(3^k) ((\neq n))</td>
<td>((3/2)^kcn)</td>
</tr>
</tbody>
</table>

Stop at level \(k \), when the subtree is \(T(1) \).

=> The problem size is 1, but the general formula for the problem size, at level \(k \) is:
\[n/2^k \Rightarrow n/2^k = 1 \Rightarrow k = \lceil \log n \rceil \]
Total Tree Cost for $T(n) = 3T(n/2) + cn$

Closed form

$T(n) = cn + (3/2)cn + (3/2)^2 cn + ... (3/2)^i cn + ... (3/2)^{\lfloor \log n \rfloor} cn =
= cn \cdot [1 + (3/2) + (3/2)^2 + ... + (3/2)^{\lfloor \log n \rfloor}] = cn \sum_{i=0}^{\lfloor \log n \rfloor} (3/2)^i =
= cn \cdot \frac{(3/2)^{\lfloor \log n \rfloor + 1} - 1}{(3/2) - 1} = 2cn[(3/2) \cdot (3/2)^{\lfloor \log n \rfloor} - 1] = 3cn \cdot (3/2)^{\lfloor \log n \rfloor} - 2cn$

use: $c^{\lfloor \log n \rfloor} = n^{\lfloor \log c \rfloor} \Rightarrow (3/2)^{\lfloor \log n \rfloor} = n^{\lfloor \log (3/2) \rfloor} = n^{\lfloor \log 3 - \log 2 \rfloor} = n^{\lfloor \log 3 \rfloor - 1} \Rightarrow$

$= 3cn \cdot n^{\lfloor \log 3 \rfloor - 1} - 2cn = 3cn^{1+\lfloor \log 3 \rfloor - 1} - 2cn = 3cn^{\lfloor \log 3 \rfloor} - 2cn = \Theta(n^{\lfloor \log 3 \rfloor})$

Explanation: since we need Θ, we can eliminate the constants and non-dominant terms earlier (after the closed form expression):

$... = cn \cdot \frac{(3/2)^{\lfloor \log n \rfloor + 1} - 1}{(3/2) - 1} = \Theta(n \cdot (3/2) \cdot (3/2)^{\lfloor \log n \rfloor + 1}) = \Theta(n \cdot (3/2)^{\lfloor \log n \rfloor})$

use: $c^{\lfloor \log n \rfloor} = n^{\lfloor \log c \rfloor} \Rightarrow (3/2)^{\lfloor \log n \rfloor} = n^{\lfloor \log (3/2) \rfloor} = n^{\lfloor \log 3 - \log 2 \rfloor} = n^{\lfloor \log 3 \rfloor - 1} \Rightarrow$

$= \Theta(n \cdot n^{\lfloor \log 3 \rfloor - 1}) = \Theta(n^{\lfloor \log 3 \rfloor})$
Recursion Tree for: $T(n) = 2T(n/5) + cn$

Stop at level k, when the subtree is $T(1)$.

$=>$ The problem size is 1, but the general formula for the problem size, at level k is:

$n/5^k => n/5^k = 1 => k = \log_5 n$

Tree cost
(derivation similar to cost for $T(n) = 3T(n/2) + cn$)
Total Tree Cost for $T(n) = 2T(n/5) + cn$

\[T(n) = cn + (2/5)cn + (2/5)^2 cn + \ldots (2/5)^i cn + \ldots (2/5)^{\log_5 n} cn =
\]
\[= cn*[1 + (2/5) + (2/5)^2 + \ldots + (2/5)^{\log_5 n}] =
\]
\[= cn\sum_{i=0}^{\log_5 n} (2/5)^i \leq cn\sum_{i=0}^{\infty} (2/5)^i =
\]
\[= cn* \frac{1}{1 - (2/5)} = (5/3)cn = O(n)
\]

Also

\[T(n) = cn + \ldots \Rightarrow T(n) \geq cn \Rightarrow T(n) = \Omega(n)
\]
\[\Rightarrow T(n) = \Theta(n)
\]
Other Variations

• $T(n) = 7T(n/3) + cn$

• $T(n) = 7T(n/3) + c n^5$
 – Here instead of $(7/3)$ we will use $(7/3^5)$

• $T(n) = T(n/2) + n$
 – The tree becomes a chain (only one node per level)
Additional materials
Practice/Strengthen understanding
Problem

• Look into the derivation if we had: $T(1) = d \neq c$.
 – In general, at most, it affects the constant for the dominant term.
Practice/Strengthen understanding

Answer

• Look into the derivation if we had: \(T(1) = d \neq c \).
 – At most, it affects the constant for the dominant term.

<table>
<thead>
<tr>
<th>Level</th>
<th>Arg/ pb size</th>
<th>Cost of 1 node</th>
<th>Nodes per level</th>
<th>Level cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(n)</td>
<td>(c*n)</td>
<td>1</td>
<td>(c*n)</td>
</tr>
<tr>
<td>1</td>
<td>(n/2)</td>
<td>(c*n/2)</td>
<td>2</td>
<td>(2cn/2) = (c*n)</td>
</tr>
<tr>
<td>2</td>
<td>(n/4)</td>
<td>(c*n/4)</td>
<td>4</td>
<td>(4cn/4) = (c*n)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(i)</td>
<td>(n/2^i)</td>
<td>(c*n/2^i)</td>
<td>(2^i)</td>
<td>(2^icn/2^i) = (c*n)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(k = \log n)</td>
<td>1 (=(n/2^k))</td>
<td>2(k) (=(n))</td>
<td>(d*n)</td>
<td></td>
</tr>
</tbody>
</table>

Tree cost:
\[
= cnk + dn = cn \log n + dn = \Theta(n \log n)
\]
Permutations without repetitions
(Harder Example)

• Covering this material is subject to time availability

• Time complexity
 – Tree, intuition (for moving the local cost in the recursive call cost), math justification
 – induction
More Recurrences
Extra material – not tested on

M1. Reduce the problem size by 1 in logarithmic time
 – E.g. Check $\log(N)$ items, eliminate 1

M2. Reduce the problem size by 1 in N^2 time
 – E.g. Check N^2 pairs, eliminate 1 item

M3. Algorithm that:
 – takes $\Theta(1)$ time to go over N items.
 – calls itself 3 times on data of size $N-1$.
 – takes $\Theta(1)$ time to combine the results.

M4. ** Algorithm that:
 – calls itself N times on data of size $N/2$.
 – takes $\Theta(1)$ time to combine the results.
 – This generates a difficult recursion.